trait SndCovariant[C] extends Functor[[β$0$]=>:[C, β$0$]]
- Attributes
- protected[this]
- Source
- Profunctor.scala
- Alphabetic
- By Inheritance
- SndCovariant
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- trait FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
- trait InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##(): Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, B]
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]=>:[C, G[α, β]]]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
- def clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws(classOf[java.lang.CloneNotSupportedException])
- def compose[G[_]](implicit G0: Functor[G]): Functor[[α]=>:[C, G[α]]]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
- def counzip[A, B](a: \/[=>:[C, A], =>:[C, B]]): =>:[C, \/[A, B]]
- Definition Classes
- Functor
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def fpair[A](fa: =>:[C, A]): =>:[C, (A, A)]
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
- def fproduct[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, (A, B)]
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
- def functorLaw: FunctorLaw
- Definition Classes
- Functor
- val functorSyntax: FunctorSyntax[[β$0$]=>:[C, β$0$]]
- Definition Classes
- Functor
- final def getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]=>:[C, G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
- def invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
- val invariantFunctorSyntax: InvariantFunctorSyntax[[β$0$]=>:[C, β$0$]]
- Definition Classes
- InvariantFunctor
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def lift[A, B](f: (A) ⇒ B): (=>:[C, A]) ⇒ =>:[C, B]
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
- def map[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, B]
Lift
f
intoF
and apply toF[A]
.Lift
f
intoF
and apply toF[A]
.- Definition Classes
- SndCovariant → Functor
- def mapply[A, B](a: A)(f: =>:[C, (A) ⇒ B]): =>:[C, B]
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def product[G[_]](implicit G0: Functor[G]): Functor[[α](=>:[C, α], G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
- def strengthL[A, B](a: A, f: =>:[C, B]): =>:[C, (A, B)]
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
- def strengthR[A, B](f: =>:[C, A], b: B): =>:[C, (A, B)]
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
- final def synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def void[A](fa: =>:[C, A]): =>:[C, Unit]
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws(classOf[java.lang.InterruptedException])
- def widen[A, B](fa: =>:[C, A])(implicit ev: <~<[A, B]): =>:[C, B]
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
- def xmap[A, B](fa: =>:[C, A], f: (A) ⇒ B, g: (B) ⇒ A): =>:[C, B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
- def xmapb[A, B](ma: =>:[C, A])(b: Bijection[A, B]): =>:[C, B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
- def xmapi[A, B](ma: =>:[C, A])(iso: Isomorphism.<=>[A, B]): =>:[C, B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor