t

scalaz

# Enum 

### Companion object Enum

#### trait Enum[F] extends Order[F]

An scalaz.Orderable with discrete values.

Self Type
Enum[F]
Source
Enum.scala
Linear Supertypes
Known Subclasses
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. Enum
2. Order
3. Equal
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait EnumLaw extends OrderLaw
2. trait EqualLaw extends AnyRef
Definition Classes
Equal
3. trait OrderLaw extends EqualLaw
Definition Classes
Order

### Abstract Value Members

1. abstract def order(x: F, y: F)
Definition Classes
Order
2. abstract def pred(a: F): F
3. abstract def succ(a: F): F

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. def apply(x: F, y: F)
Definition Classes
Order
5. final def asInstanceOf[T0]: T0
Definition Classes
Any
6. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
7. def contramap[B](f: (B) ⇒ F): Order[B]
Definition Classes
OrderEqual
8. def enumLaw
9. val enumSyntax: EnumSyntax[F]
10. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
11. def equal(x: F, y: F)
Definition Classes
OrderEqual
12. def equalIsNatural

returns

true, if `equal(f1, f2)` is known to be equivalent to `f1 == f2`

Definition Classes
Equal
13. def equalLaw
Definition Classes
Equal
14. val equalSyntax: EqualSyntax[F]
Definition Classes
Equal
15. def equals(arg0: Any)
Definition Classes
AnyRef → Any
16. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
17. def from(a: F): EphemeralStream[F]
18. def fromStep(n: Int, a: F): EphemeralStream[F]
19. def fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]
20. def fromStepToL(n: Int, a: F, z: F): List[F]
21. def fromTo(a: F, z: F): EphemeralStream[F]
22. def fromToL(a: F, z: F): List[F]
23. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
24. def greaterThan(x: F, y: F)
Definition Classes
Order
25. def greaterThanOrEqual(x: F, y: F)
Definition Classes
Order
26. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
27. final def isInstanceOf[T0]
Definition Classes
Any
28. def lessThan(x: F, y: F)
Definition Classes
Order
29. def lessThanOrEqual(x: F, y: F)
Definition Classes
Order
30. def max: Option[F]
31. def max(x: F, y: F): F
Definition Classes
Order
32. def min: Option[F]
33. def min(x: F, y: F): F
Definition Classes
Order
34. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
35. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
36. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
37. def orderLaw
Definition Classes
Order
38. val orderSyntax: OrderSyntax[F]
Definition Classes
Order
39. def predState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the predecessor (`pred`) on each spin and executing the given function on the current value.

Produce a state value that executes the predecessor (`pred`) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.

f

The function to execute on each spin of the state value.

40. def predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

41. def predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

42. def predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given mapping function.

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

43. def predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given binding function.

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

44. def predn(n: Int, a: F): F
45. def predx: Kleisli[Option, F, F]

Moves to the predecessor, unless at the minimum.

46. def reverseOrder: Order[F]
Definition Classes
Order
47. def sort(x: F, y: F): (F, F)
Definition Classes
Order
48. def succState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the successor (`succ`) on each spin and executing the given function on the current value.

Produce a state value that executes the successor (`succ`) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.

f

The function to execute on each spin of the state value.

49. def succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

50. def succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

51. def succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given mapping function.

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

52. def succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given binding function.

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

53. def succn(n: Int, a: F): F
54. def succx: Kleisli[Option, F, F]

Moves to the successor, unless at the maximum.

55. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
56. def toScalaOrdering

Definition Classes
Order
Note

`Order.fromScalaOrdering(toScalaOrdering).order(x, y)`

### `this.order(x, y)`

57. def toString()
Definition Classes
AnyRef → Any
58. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
59. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
60. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()