t

scalaz

# IsomorphismBifunctor 

#### trait IsomorphismBifunctor[F[_, _], G[_, _]] extends Bifunctor[F]

Source
Isomorphism.scala
Linear Supertypes
Known Subclasses
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismBifunctor
2. Bifunctor
3. BifunctorParent
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Abstract Value Members

1. implicit abstract def G: Bifunctor[G]
2. abstract def iso: Isomorphism.<~~>[F, G]

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. val bifunctorSyntax: BifunctorSyntax[F]
Definition Classes
Bifunctor
6. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

`map` over both type parameters.

`map` over both type parameters.

Definition Classes
IsomorphismBifunctorBifunctor
7. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
8. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

The composition of Bifunctors `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifunctor

The composition of Bifunctors `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifunctor

Definition Classes
Bifunctor
9. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

Embed two Functors , one on each side

Embed two Functors , one on each side

Definition Classes
Bifunctor
10. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

Embed one Functor to the left

Embed one Functor to the left

Definition Classes
Bifunctor
11. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

Embed one Functor to the right

Embed one Functor to the right

Definition Classes
Bifunctor
12. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
13. def equals(arg0: Any)
Definition Classes
AnyRef → Any
14. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
15. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
16. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
17. final def isInstanceOf[T0]
Definition Classes
Any
18. def leftFunctor[X]: Functor[[α\$0\$]F[α\$0\$, X]]

Extract the Functor on the first param.

Extract the Functor on the first param.

Definition Classes
Bifunctor
19. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
Definition Classes
Bifunctor
20. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
21. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
22. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
23. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

The product of Bifunctors `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifunctor

The product of Bifunctors `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifunctor

Definition Classes
Bifunctor
24. def rightFunctor[X]: Functor[[β\$1\$]F[X, β\$1\$]]

Extract the Functor on the second param.

Extract the Functor on the second param.

Definition Classes
Bifunctor
25. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
Definition Classes
Bifunctor
26. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
27. def toString()
Definition Classes
AnyRef → Any
28. def uFunctor: Functor[[α]F[α, α]]

Unify the functor over both params.

Unify the functor over both params.

Definition Classes
Bifunctor
29. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
Definition Classes
Bifunctor
30. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
31. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
32. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
33. def widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]

Bifunctors are covariant by nature

Bifunctors are covariant by nature

Definition Classes
BifunctorParent