object Zap extends ZapInstances
- Source
- Zap.scala
- Alphabetic
- By Inheritance
- Zap
- ZapInstances
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
implicit
def
comonadMonadZap[F[_], G[_]](implicit d: Zap[F, G], G: Functor[G]): Zap[[β$4$]Cofree[F, β$4$], [β$5$]Free[G, β$5$]]
A cofree comonad and a free monad annihilate each other
A cofree comonad and a free monad annihilate each other
- Definition Classes
- ZapInstances
-
implicit
def
coproductProductZap[F[_], FF[_], G[_], GG[_]](implicit d1: Zap[FF, F], d2: Zap[GG, G]): Zap[[α](FF[α], GG[α]), [α]\/[F[α], G[α]]]
The coproduct of two functors annihilates their product.
The coproduct of two functors annihilates their product.
- Definition Classes
- ZapInstances
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
implicit
def
functorPairsZap[F1[_], F2[_], G1[_], G2[_]](implicit zf: Zap[F1, F2], zg: Zap[G1, G2]): Zap[[α]F1[G1[α]], [α]F2[G2[α]]]
- Definition Classes
- ZapInstances
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
implicit
val
identityZap: Zap[Id.Id, Id.Id]
The identity functor annihilates itself.
The identity functor annihilates itself.
- Definition Classes
- ZapInstances
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
implicit
def
monadComonadZap[F[_], G[_]](implicit d: Zap[F, G], F: Functor[F]): Zap[[β$0$]Free[F, β$0$], [β$1$]Cofree[G, β$1$]]
A free monad and a cofree comonad annihilate each other
A free monad and a cofree comonad annihilate each other
- Definition Classes
- ZapInstances
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
implicit
def
productCoproductZap[F[_], FF[_], G[_], GG[_]](implicit d1: Zap[F, FF], d2: Zap[G, GG]): Zap[[α]\/[F[α], G[α]], [α](FF[α], GG[α])]
The product of two functors annihilates their coproduct.
The product of two functors annihilates their coproduct.
- Definition Classes
- ZapInstances
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()