Uses of Class
org.deeplearning4j.nn.conf.layers.Layer
-
-
Uses of Layer in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api with parameters of type Layer Modifier and Type Method Description List<String>ParamInitializer. biasKeys(Layer layer)Bias parameter keys given the layer configurationbooleanParamInitializer. isBiasParam(Layer layer, String key)Is the specified parameter a bias?booleanParamInitializer. isWeightParam(Layer layer, String key)Is the specified parameter a weight?longParamInitializer. numParams(Layer layer)List<String>ParamInitializer. paramKeys(Layer layer)Get a list of all parameter keys given the layer configurationList<String>ParamInitializer. weightKeys(Layer layer)Weight parameter keys given the layer configuration -
Uses of Layer in org.deeplearning4j.nn.conf
Fields in org.deeplearning4j.nn.conf declared as Layer Modifier and Type Field Description protected LayerNeuralNetConfiguration.Builder. layerprotected LayerNeuralNetConfiguration. layerMethods in org.deeplearning4j.nn.conf with parameters of type Layer Modifier and Type Method Description ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. addLayer(String layerName, Layer layer, String... layerInputs)Add a layer, with noInputPreProcessor, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. addLayer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)Add a layer and anInputPreProcessor, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. appendLayer(String layerName, Layer layer)Add a layer, with noInputPreProcessor, with the specified name and input from the last added layer/vertex.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. appendLayer(String layerName, Layer layer, InputPreProcessor preProcessor)Add a layer and anInputPreProcessor, with the specified name and input from the last added layer/vertex.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. layer(int layerName, Layer layer, String... layerInputs)Add a layer, with noInputPreProcessor, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. layer(String layerName, Layer layer, String... layerInputs)Add a layer, with noInputPreProcessor, with the specified name and specified inputs.ComputationGraphConfiguration.GraphBuilderComputationGraphConfiguration.GraphBuilder. layer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)Add a layer and anInputPreProcessor, with the specified name and specified inputs.NeuralNetConfiguration.BuilderNeuralNetConfiguration.Builder. layer(Layer layer)Layer class.NeuralNetConfiguration.ListBuilderNeuralNetConfiguration.ListBuilder. layer(int ind, @NonNull Layer layer)NeuralNetConfiguration.ListBuilderNeuralNetConfiguration.ListBuilder. layer(Layer layer)NeuralNetConfiguration.ListBuilderNeuralNetConfiguration.Builder. list(Layer... layers)Create a ListBuilder (for creating a MultiLayerConfiguration) with the specified layers
Usage: -
Uses of Layer in org.deeplearning4j.nn.conf.layers
Methods in org.deeplearning4j.nn.conf.layers with type parameters of type Layer Modifier and Type Method Description <E extends Layer>
ECapsuleLayer.Builder. build()<E extends Layer>
ECapsuleStrengthLayer.Builder. build()abstract <E extends Layer>
ELayer.Builder. build()<E extends Layer>
EPrimaryCapsules.Builder. build()Methods in org.deeplearning4j.nn.conf.layers that return Layer Modifier and Type Method Description LayerLayer. clone()Methods in org.deeplearning4j.nn.conf.layers with parameters of type Layer Modifier and Type Method Description static voidLayerValidation. generalValidation(String layerName, Layer layer, IDropout iDropout, List<Regularization> regularization, List<Regularization> regularizationBias, List<LayerConstraint> allParamConstraints, List<LayerConstraint> weightConstraints, List<LayerConstraint> biasConstraints) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.convolutional
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.convolutional Modifier and Type Class Description classCropping1DclassCropping2DclassCropping3D -
Uses of Layer in org.deeplearning4j.nn.conf.layers.misc
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.misc Modifier and Type Class Description classElementWiseMultiplicationLayerclassFrozenLayerclassFrozenLayerWithBackpropFrozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.classRepeatVectorFields in org.deeplearning4j.nn.conf.layers.misc declared as Layer Modifier and Type Field Description protected LayerFrozenLayer. layerMethods in org.deeplearning4j.nn.conf.layers.misc that return Layer Modifier and Type Method Description LayerFrozenLayer. clone()LayerFrozenLayerWithBackprop. clone()Methods in org.deeplearning4j.nn.conf.layers.misc with parameters of type Layer Modifier and Type Method Description FrozenLayer.BuilderFrozenLayer.Builder. layer(Layer layer)Constructors in org.deeplearning4j.nn.conf.layers.misc with parameters of type Layer Constructor Description FrozenLayer(Layer layer)FrozenLayerWithBackprop(Layer layer) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.objdetect
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.objdetect Modifier and Type Class Description classYolo2OutputLayer -
Uses of Layer in org.deeplearning4j.nn.conf.layers.recurrent
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.recurrent Modifier and Type Class Description classBidirectionalclassLastTimeStepclassSimpleRnnclassTimeDistributedMethods in org.deeplearning4j.nn.conf.layers.recurrent that return Layer Modifier and Type Method Description LayerLastTimeStep. getUnderlying()Methods in org.deeplearning4j.nn.conf.layers.recurrent with parameters of type Layer Modifier and Type Method Description Bidirectional.BuilderBidirectional.Builder. rnnLayer(Layer layer)voidBidirectional.Builder. setLayer(Layer layer)Constructors in org.deeplearning4j.nn.conf.layers.recurrent with parameters of type Layer Constructor Description Bidirectional(@NonNull Layer layer)Create a Bidirectional wrapper, with the default Mode (CONCAT) for the specified layerBidirectional(@NonNull Bidirectional.Mode mode, @NonNull Layer layer)Create a Bidirectional wrapper for the specified layerLastTimeStep(Layer underlying)TimeDistributed(@NonNull Layer underlying, RNNFormat rnnDataFormat)TimeDistributed(Layer underlying) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.samediff
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.samediff Modifier and Type Class Description classAbstractSameDiffLayerclassSameDiffLambdaLayerclassSameDiffLayerclassSameDiffOutputLayer -
Uses of Layer in org.deeplearning4j.nn.conf.layers.util
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.util Modifier and Type Class Description classMaskLayerclassMaskZeroLayerMethods in org.deeplearning4j.nn.conf.layers.util with parameters of type Layer Modifier and Type Method Description MaskZeroLayer.BuilderMaskZeroLayer.Builder. setUnderlying(Layer underlying)MaskZeroLayer.BuilderMaskZeroLayer.Builder. underlying(Layer underlying)Constructors in org.deeplearning4j.nn.conf.layers.util with parameters of type Layer Constructor Description MaskZeroLayer(Layer underlying, double maskingValue) -
Uses of Layer in org.deeplearning4j.nn.conf.layers.variational
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.variational Modifier and Type Class Description classVariationalAutoencoder -
Uses of Layer in org.deeplearning4j.nn.conf.layers.wrapper
Subclasses of Layer in org.deeplearning4j.nn.conf.layers.wrapper Modifier and Type Class Description classBaseWrapperLayerFields in org.deeplearning4j.nn.conf.layers.wrapper declared as Layer Modifier and Type Field Description protected LayerBaseWrapperLayer. underlyingConstructors in org.deeplearning4j.nn.conf.layers.wrapper with parameters of type Layer Constructor Description BaseWrapperLayer(Layer underlying) -
Uses of Layer in org.deeplearning4j.nn.conf.ocnn
Subclasses of Layer in org.deeplearning4j.nn.conf.ocnn Modifier and Type Class Description classOCNNOutputLayer -
Uses of Layer in org.deeplearning4j.nn.conf.serde
Methods in org.deeplearning4j.nn.conf.serde with parameters of type Layer Modifier and Type Method Description protected booleanBaseNetConfigDeserializer. requiresActivationFromLegacy(Layer[] layers)protected booleanBaseNetConfigDeserializer. requiresDropoutFromLegacy(Layer[] layers)protected booleanBaseNetConfigDeserializer. requiresIUpdaterFromLegacy(Layer[] layers)protected booleanBaseNetConfigDeserializer. requiresLegacyLossHandling(Layer[] layers)protected booleanBaseNetConfigDeserializer. requiresRegularizationFromLegacy(Layer[] layers)protected booleanBaseNetConfigDeserializer. requiresWeightInitFromLegacy(Layer[] layers) -
Uses of Layer in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers with type parameters of type Layer Modifier and Type Class Description classAbstractLayer<LayerConfT extends Layer>A layer with input and output, no parameters or gradients -
Uses of Layer in org.deeplearning4j.nn.layers.ocnn
Methods in org.deeplearning4j.nn.layers.ocnn with parameters of type Layer Modifier and Type Method Description List<String>OCNNParamInitializer. biasKeys(Layer layer)booleanOCNNParamInitializer. isBiasParam(Layer layer, String key)booleanOCNNParamInitializer. isWeightParam(Layer layer, String key)longOCNNParamInitializer. numParams(Layer layer)List<String>OCNNParamInitializer. paramKeys(Layer layer)List<String>OCNNParamInitializer. weightKeys(Layer layer) -
Uses of Layer in org.deeplearning4j.nn.layers.util
Subclasses of Layer in org.deeplearning4j.nn.layers.util Modifier and Type Class Description classIdentityLayer -
Uses of Layer in org.deeplearning4j.nn.params
Methods in org.deeplearning4j.nn.params with parameters of type Layer Modifier and Type Method Description List<String>BatchNormalizationParamInitializer. biasKeys(Layer layer)List<String>BidirectionalParamInitializer. biasKeys(Layer layer)List<String>ConvolutionParamInitializer. biasKeys(Layer layer)List<String>DefaultParamInitializer. biasKeys(Layer layer)List<String>DepthwiseConvolutionParamInitializer. biasKeys(Layer layer)List<String>EmptyParamInitializer. biasKeys(Layer layer)List<String>FrozenLayerParamInitializer. biasKeys(Layer layer)List<String>FrozenLayerWithBackpropParamInitializer. biasKeys(Layer layer)List<String>GravesBidirectionalLSTMParamInitializer. biasKeys(Layer layer)List<String>GravesLSTMParamInitializer. biasKeys(Layer layer)List<String>LSTMParamInitializer. biasKeys(Layer layer)List<String>PReLUParamInitializer. biasKeys(Layer layer)List<String>SameDiffParamInitializer. biasKeys(Layer layer)List<String>SeparableConvolutionParamInitializer. biasKeys(Layer layer)List<String>SimpleRnnParamInitializer. biasKeys(Layer layer)List<String>VariationalAutoencoderParamInitializer. biasKeys(Layer layer)List<String>WrapperLayerParamInitializer. biasKeys(Layer layer)protected booleanDefaultParamInitializer. hasBias(Layer layer)protected booleanDefaultParamInitializer. hasLayerNorm(Layer layer)protected booleanSimpleRnnParamInitializer. hasLayerNorm(Layer layer)booleanBatchNormalizationParamInitializer. isBiasParam(Layer layer, String key)booleanBidirectionalParamInitializer. isBiasParam(Layer layer, String key)booleanConvolutionParamInitializer. isBiasParam(Layer layer, String key)booleanDefaultParamInitializer. isBiasParam(Layer layer, String key)booleanDepthwiseConvolutionParamInitializer. isBiasParam(Layer layer, String key)booleanEmptyParamInitializer. isBiasParam(Layer layer, String key)booleanFrozenLayerParamInitializer. isBiasParam(Layer layer, String key)booleanFrozenLayerWithBackpropParamInitializer. isBiasParam(Layer layer, String key)booleanGravesBidirectionalLSTMParamInitializer. isBiasParam(Layer layer, String key)booleanGravesLSTMParamInitializer. isBiasParam(Layer layer, String key)booleanLSTMParamInitializer. isBiasParam(Layer layer, String key)booleanPReLUParamInitializer. isBiasParam(Layer layer, String key)booleanSameDiffParamInitializer. isBiasParam(Layer layer, String key)booleanSeparableConvolutionParamInitializer. isBiasParam(Layer layer, String key)booleanSimpleRnnParamInitializer. isBiasParam(Layer layer, String key)booleanVariationalAutoencoderParamInitializer. isBiasParam(Layer layer, String key)booleanWrapperLayerParamInitializer. isBiasParam(Layer layer, String key)booleanBatchNormalizationParamInitializer. isWeightParam(Layer layer, String key)booleanBidirectionalParamInitializer. isWeightParam(Layer layer, String key)booleanConvolutionParamInitializer. isWeightParam(Layer layer, String key)booleanDefaultParamInitializer. isWeightParam(Layer layer, String key)booleanDepthwiseConvolutionParamInitializer. isWeightParam(Layer layer, String key)booleanEmptyParamInitializer. isWeightParam(Layer layer, String key)booleanFrozenLayerParamInitializer. isWeightParam(Layer layer, String key)booleanFrozenLayerWithBackpropParamInitializer. isWeightParam(Layer layer, String key)booleanGravesBidirectionalLSTMParamInitializer. isWeightParam(Layer layer, String key)booleanGravesLSTMParamInitializer. isWeightParam(Layer layer, String key)booleanLSTMParamInitializer. isWeightParam(Layer layer, String key)booleanPReLUParamInitializer. isWeightParam(Layer layer, String key)booleanSameDiffParamInitializer. isWeightParam(Layer layer, String key)booleanSeparableConvolutionParamInitializer. isWeightParam(Layer layer, String key)booleanSimpleRnnParamInitializer. isWeightParam(Layer layer, String key)booleanVariationalAutoencoderParamInitializer. isWeightParam(Layer layer, String key)booleanWrapperLayerParamInitializer. isWeightParam(Layer layer, String key)longBatchNormalizationParamInitializer. numParams(Layer l)longBidirectionalParamInitializer. numParams(Layer layer)longConvolution3DParamInitializer. numParams(Layer l)longConvolutionParamInitializer. numParams(Layer l)longDeconvolution3DParamInitializer. numParams(Layer l)longDefaultParamInitializer. numParams(Layer l)longDepthwiseConvolutionParamInitializer. numParams(Layer l)longElementWiseParamInitializer. numParams(Layer layer)longEmptyParamInitializer. numParams(Layer layer)longFrozenLayerParamInitializer. numParams(Layer layer)longFrozenLayerWithBackpropParamInitializer. numParams(Layer layer)longGravesBidirectionalLSTMParamInitializer. numParams(Layer l)longGravesLSTMParamInitializer. numParams(Layer l)longLSTMParamInitializer. numParams(Layer l)longPReLUParamInitializer. numParams(Layer l)longSameDiffParamInitializer. numParams(Layer layer)longSeparableConvolutionParamInitializer. numParams(Layer l)longSimpleRnnParamInitializer. numParams(Layer layer)longWrapperLayerParamInitializer. numParams(Layer layer)List<String>BatchNormalizationParamInitializer. paramKeys(Layer layer)List<String>BidirectionalParamInitializer. paramKeys(Layer layer)List<String>ConvolutionParamInitializer. paramKeys(Layer layer)List<String>DefaultParamInitializer. paramKeys(Layer layer)List<String>DepthwiseConvolutionParamInitializer. paramKeys(Layer layer)List<String>EmptyParamInitializer. paramKeys(Layer layer)List<String>FrozenLayerParamInitializer. paramKeys(Layer layer)List<String>FrozenLayerWithBackpropParamInitializer. paramKeys(Layer layer)List<String>GravesBidirectionalLSTMParamInitializer. paramKeys(Layer layer)List<String>GravesLSTMParamInitializer. paramKeys(Layer layer)List<String>LSTMParamInitializer. paramKeys(Layer layer)List<String>PReLUParamInitializer. paramKeys(Layer layer)List<String>SameDiffParamInitializer. paramKeys(Layer layer)List<String>SeparableConvolutionParamInitializer. paramKeys(Layer layer)List<String>SimpleRnnParamInitializer. paramKeys(Layer layer)List<String>VariationalAutoencoderParamInitializer. paramKeys(Layer l)List<String>WrapperLayerParamInitializer. paramKeys(Layer layer)List<String>BatchNormalizationParamInitializer. weightKeys(Layer layer)List<String>BidirectionalParamInitializer. weightKeys(Layer layer)List<String>ConvolutionParamInitializer. weightKeys(Layer layer)List<String>DefaultParamInitializer. weightKeys(Layer layer)List<String>DepthwiseConvolutionParamInitializer. weightKeys(Layer layer)List<String>EmptyParamInitializer. weightKeys(Layer layer)List<String>FrozenLayerParamInitializer. weightKeys(Layer layer)List<String>FrozenLayerWithBackpropParamInitializer. weightKeys(Layer layer)List<String>GravesBidirectionalLSTMParamInitializer. weightKeys(Layer layer)List<String>GravesLSTMParamInitializer. weightKeys(Layer layer)List<String>LSTMParamInitializer. weightKeys(Layer layer)List<String>PReLUParamInitializer. weightKeys(Layer layer)List<String>SameDiffParamInitializer. weightKeys(Layer layer)List<String>SeparableConvolutionParamInitializer. weightKeys(Layer layer)List<String>SimpleRnnParamInitializer. weightKeys(Layer layer)List<String>VariationalAutoencoderParamInitializer. weightKeys(Layer layer)List<String>WrapperLayerParamInitializer. weightKeys(Layer layer) -
Uses of Layer in org.deeplearning4j.nn.transferlearning
Methods in org.deeplearning4j.nn.transferlearning with parameters of type Layer Modifier and Type Method Description TransferLearning.BuilderTransferLearning.Builder. addLayer(Layer layer)Add layers to the net Required if layers are removed.TransferLearning.GraphBuilderTransferLearning.GraphBuilder. addLayer(String layerName, Layer layer, String... layerInputs)Add a layer of the specified configuration to the computation graphTransferLearning.GraphBuilderTransferLearning.GraphBuilder. addLayer(String layerName, Layer layer, InputPreProcessor preProcessor, String... layerInputs)Add a layer with a specified preprocessor -
Uses of Layer in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type Layer Modifier and Type Method Description static Convolution3D.DataFormatConvolution3DUtils. getFormatForLayer(Layer inputLayer)Returns theConvolution3D.DataFormatfor the associated layer.static CNN2DFormatConvolutionUtils. getFormatForLayer(Layer layer)Get the format for a given layer.static RNNFormatTimeSeriesUtils. getFormatFromRnnLayer(Layer layer)Get theRNNFormatfrom the RNN layer, accounting for the presence of wrapper layers like Bidirectional, LastTimeStep, etcstatic RNNFormatConvolution1DUtils. getRnnFormatFromLayer(Layer layer)Get theRNNFormatfor the given layer.static booleanConvolution1DUtils. hasRnnDataFormat(Layer layer)Returns true if the given layer has anRNNFormat.static booleanConvolution3DUtils. layerHasConvolution3DLayout(Layer layer)Returns true if any of the layers are 3d convolution, pooling, or upsampling layers including:Convolution3D,Deconvolution3D,Subsampling3DLayer,Upsampling3Dstatic booleanConvolutionUtils. layerHasConvolutionLayout(Layer layer)Returns true if a layer has aCNN2DFormatproperty.static voidOutputLayerUtil. validateOutputLayer(String layerName, Layer layer)Validate the output layer (or loss layer) configuration, to detect invalid consfiugrations.static voidOutputLayerUtil. validateOutputLayerForClassifierEvaluation(Layer outputLayer, Class<? extends IEvaluation> classifierEval)Validates if the output layer configuration is valid for classifier evaluation.
-